53 019 subscribers

Водородная энергетика: методы получения водорода

12k full reads
28k story viewsUnique page visitors
12k read the story to the endThat's 43% of the total page views
7 minutes — average reading time
Водородная энергетика: методы получения водорода

Часть 2.

Так как водород, фактически, не встречается на Земле в свободной форме, его вынуждены извлекать из прочих связанных соединений.

Одним из главных преимуществ водородной энергетики является большое разнообразие химических способов получения водорода.

Преимуществом тут является независимость от одного метода получения водорода, что благоприятно сказывается на энергетической безопасности всей концепции водородной энергетики.

Основными методами получения водорода являются:

1. паровая конверсия метана и природного газа;

2. газификация угля;

3. электролиз воды;

4. пиролиз;

5. частичное окисление;

6. биотехнологии.

Водород можно получать взаимодействием активных металлов с кислотами-неокислителями. Например, взаимодействием Цинка и Хлороводорода:

Zn + 2HCl = ZnCl2 + H2.

Как мы видим, взаимодействие Цинка с соляной кислотой даёт выход водорода. Существуют и другие способы подобного получения водорода. Например, взаимодействие алюминия с водными растворами щелочей и т.п. Однако, подобный способ подходит лишь для лабораторных исследований и демонстраций, потому что он очень дорогой.

Концепция водородной энергетики подразумевает промышленное производство водорода; массовость и дешевизна должны быть неотъемлемой частью всей концепции.

Промышленные способы добычи водорода:

1. Электролиз воды

Промышленная установка щелочного электролиза воды
Промышленная установка щелочного электролиза воды
Промышленная установка щелочного электролиза воды

Разберём его чуть подробнее, так как много всяких изобретателей пытаются использовать именно эту технологию.

Воздействуя на дистиллированную воду электрическим током, можно разложить её на составляющие - кислород и водород:

2H2O = 2H2 + O2.

«Впервые электролитическое разложение воды на кислород и водород было осуществлено в 1800 году, а промышленное освоение этого метода началось с 1888 года, когда стали доступны генераторы постоянного тока».

Электролиз воды - довольно дорогая технология получения водорода. В совокупности, на неё приходится всего 4-5% от общего произведённого объёма водорода.

Технология электролиза воды выглядит привлекательно в связи с экологической чистотой получения и возможности создания установок с широким диапазоном производительности (от нескольких литров до сотен кубометров водорода в час).

Способ прост и удобен в эксплуатации, обладает высокой чистотой производимого водорода. Дополнительно, побочным продуктом является получение кислорода - ценного химического вещества.

Но главное, электролиз водорода - очень перспективный метод экологически чистого получения водорода из возобновляемых или атомных источников энергии.

Я напомню, что концепция производства водородной энергетики и её дальнейшего развития в водородную экономику преследует именно экологическую чистоту.

Методов разложения воды для выделения водовода множество.

Основные из них:

  • электрохимический;
  • термический;
  • термохимический;
  • биохимический;
  • фотохимический;
  • электролитический.

Разумеется, наиболее проработанный и изученный метод – электролитический. Он позволяет производить водород с КПД до 90%.

Существуют три промышленных способа реализации электролизной технологии производства водорода. Они отличаются типом используемого электролита и условиями проведения электролиза.

Способы реализации электролизной технологии производства водорода
Способы реализации электролизной технологии производства водорода
Способы реализации электролизной технологии производства водорода

Щелочной электролиз — процесс прохождения электрического тока через раствор электролита от анода к катоду, вследствие чего на них образуются газы - соответственно, водород и кислород:

1. на аноде: 2OH– → 0,5O2 + H2O + 2e (выделение кислорода);

2. на катоде : 2H2O + 2e– → H2 + 2OH (выделение водорода);

3. суммарная реакция: H2O → H2 + 0,5O2.

Дальнейшим усовершенствованием технологии в области КПД и экономичности стала разработка электролизёров с твердо-полимерным электролитом (ТПЭ).

ТПЭ-электролизёры в 6 раз дороже водно-щелочных с аналогичными характеристиками, но при этом экологически чистые; имеют значительно меньшие массо-габаритные характеристики и энергозатраты, повышенный уровень безопасности, возможность работы в нестационарных режимах, простое обслуживание.

Основной элемент ТПЭ - беспористая полимерная мембрана перфторированного углерода, обладающая высокой химической стойкостью и высокой электропроводностью. Переносчиком заряда в таких мембранах является гидратированный протон:

1. на анод: H2O → O2 + 4H+;

2. на катод: 4H(+) + 4e(–) → 2H2.

Минимальная чистота получения водорода электролизом с ТПЭ - 99,98%.

Принципиальная схема электролизной ячейки с ТПЭ
Принципиальная схема электролизной ячейки с ТПЭ
Принципиальная схема электролизной ячейки с ТПЭ

Третий метод - высокотемпературный электролиз водяного пара. Проводится в ячейках с твёрдым электролитом на основе оксидов циркония, оксидов некоторых элементов (оксиды кальция, иттрия, иттербия, селена, ванадия) для увеличения его электропроводимости. Подобный электролит обладает униполярной проводимостью - ток через него переносится ионами кислорода, образующимися при диссоциации воды и выделении водорода на катоде:

Н2О (пар) + 2е → О2 + Н2 (газ) катод О 2(–) → 0,5 О2 (газ) + 2е.

Вывод водорода осуществляется из катодного пространства вместе с непрореагировавшим паром.

Принципиальная схема ячейки для высокотемпературного электролиза водяного пара с коаксиальным расположением электродов: 1 — катодное пространство ячейки; 2 — катод; 3 — твёрдый электролит на основе оксидов циркония; 4 — анод; 5 — анодное пространство ячейки
Принципиальная схема ячейки для высокотемпературного электролиза водяного пара с коаксиальным расположением электродов: 1 — катодное пространство ячейки; 2 — катод; 3 — твёрдый электролит на основе оксидов циркония; 4 — анод; 5 — анодное пространство ячейки
Принципиальная схема ячейки для высокотемпературного электролиза водяного пара с коаксиальным расположением электродов: 1 — катодное пространство ячейки; 2 — катод; 3 — твёрдый электролит на основе оксидов циркония; 4 — анод; 5 — анодное пространство ячейки

Независимо от способа реализации, основной вклад в стоимость водорода, производимого методом электролиза (70–90 %), вносят затраты на электроэнергию!

В комментариях к прошлой статьи читатель писал о якобы новом изобретённом им способе электролиза для получения водорода из морской воды. Но ничего нового тут нет. Смотрим формулу:
2NaCl + 2H2O = H2+ Cl2+ 2NaOH.
Ну это же элементарно, давно известно и вовсю применяется.

Для получения водорода из воды при электролизе требуется, как минимум, столько же энергии, сколько её выделяется при сгорании водорода. Однако не вся эта энергия должна поступать в виде электроэнергии — можно использовать в электролизёрах и тепловую энергию воды. Тут имеется энергетический баланс: чем выше её температура, тем больше вклад тепловой энергии и меньше вклад электрической. В ряде случаев это сулит немалую выгоду - можно использовать тепло от любого источника: скажем, от ядерного реактора. Особенно значительна экономия электроэнергии при температурах воды в районе тысячи градусов. Однако, в этих условиях сама вода переходит в пар, и снова потребуется твердый термостойкий электролит.

Многочисленные работы, в которых сделана попытка дать технико-экономическую оценку путей развития производства водорода на ближайшие годы, свидетельствуют о перспективности разрабатываемых электрохимических методов.

В перспективе можно ожидать, что параллельно с разработкой термических, термохимических, биохимических и других методов получения водорода из воды, начнутся интенсивные работы по усовершенствованию существующих и созданию более экономичных новых методов электролитического разложения воды на базе электрической энергии станций, работающих на атомной энергии. Одно из таких направлений уже разрабатывается - электролиз воды под давлением.

2. Паровая, или парокислородная конверсия метана (ПКМ).

Производство водорода методом риформинга конверсии метана
Производство водорода методом риформинга конверсии метана
Производство водорода методом риформинга конверсии метана

Метан – основной компонент природного газа, его концентрация в нём достигает от 77 до 99%. Высокое содержание метана и в попутных нефтяных газах – от 31 до 91%. Метан - это, фактически, большая молекула водорода, которая состоит из одного атома углерода и 4-х атомов водорода. Уже из химической формулы ясно, что метан «сильно обогащён» водородом. Следовательно, получение водорода именно из метана должно быть наиболее рентабельным.

Схема реактора паровой конверсии метана
Схема реактора паровой конверсии метана
Схема реактора паровой конверсии метана

Процесс отделения водорода от углеродной основы в метане протекает в трубчатых печах (химических паровых реформерах) с внешним подводом теплоты при температурах 750–850 градусов Цельсия через стенку трубы на каталитических поверхностях (никель, корунд и др.):

CH4+H2O ↔ CO+3H2;

далее с монооксидом углерода, или попросту «угарным газом», идёт реакция:

CO+H2O ↔ CO2+H2.

Это самый дешёвый и рентабельный способ получения водорода. Себестоимость процесса - от 2 до 5 долларов за 1 кг водорода!

В парокислородной конверсии вместе с горячим паром в активную зону реактора подаётся кислород. Реакции процесса аналогичные, что и для ПКМ, однако дополнительно происходит окисление метана кислородом:

CH4+O2 ↔ 2CO+3H2.

Реагирование веществ в парокислородной конверсии метана даёт общий результирующий тепловой эффект, равный нулю!

Это делает установку дороже на 5–10 %.

Главное преимущество парокислородной конверсии по сравнению с ПКМ — передача теплоты напрямую, а не через стенку теплообменника.

Сравнение характеристик ПКМ и парокислородной конверсии
Сравнение характеристик ПКМ и парокислородной конверсии
Сравнение характеристик ПКМ и парокислородной конверсии

В настоящий момент уже разработан высокоэффективный проточный мембранный аппарат для одновременного риформинга метана и окисления СО на никелевых и палладиевых катализаторах. Чистота водорода достигает 99,999 %, тогда как при конверсии природного газа — всего 76,2 %.

3. Газификация угля

Установка газификация угля
Установка газификация угля
Установка газификация угля

Самый старейшим с 1940-вых годов способом получения водорода является газификация угля. Справедливо встаёт вопрос: причём здесь уголь, ведь в его составе всего около 6% нужного нам газа? Однако, получение водорода из угля связано с термическим разложением воды, а сам уголь непосредственно используется в качестве энергоресурса и химического реагента. В угле много углерода, который и будет реагировать с кислородом, водой и угарным газом.

Воздействуя на уголь одновременно водяным паром и кислородом, получаем уже знакомую парокислородную конверсию.

Основные реакции процесса газификации угля:

C+O2 ↔ CO2;

C+2H2O ↔ CO2+2H2;

C+H2O ↔ CO+H2;

C+CO2 ↔ 2CO.

Существует большое количество способов газификации угля. Они отличаются термодинамическими параметрами, размером и принципом подачи угля в газогенератор, а также способом удаления шлака. Существует многоступенчатый процесс производства водорода железопаровым способом:

Fe3O4+CO ↔ 3FeO+CO2;

Fe3O4+H2 ↔ 3FeO+H2O.

Все рассмотренные методы - это автотермическое проведение реакций газификации, где в методе с CO2-акцептором осуществлён аллотермический подвод теплоты за счёт реакции СаО с двуокисью углерода. Далее, в регенераторе карбонат кальция разлагается термически:

CaO+CO2 ↔ CaCO3;

CaCO3 ↔ CaO+CO2.

Есть и классические процессы: Лурги, Копперс-Тотцека и Винклера.

Производство синтез-газа, в состав которого входят: водород, метан, окислы углерода и прочие газы - может быть также основано на переработке биомассы и промышленно-бытовых отходов, что одновременно способствует решению экологических проблем. Например, переработать отходы жизнедеятельности рогатого скота, да и вообще любого другого сельскохозяйственного животного.

При термохимической обработке биомассы её нагревают без доступа кислорода до температуры 500–800 градусов Цельсия, в результате чего образуются водород, метан и оксид углерода.

Для выделения водорода из синтез-газа используются разнообразные методы: адсорбция, абсорбция, диффузии через мембраны, электрохимическая конверсия, глубокое охлаждение, катализ.

Параметры методов газификации угля
Параметры методов газификации угля
Параметры методов газификации угля

Это основные, хорошо освоенные и изученные методы промышленного получения водовода. Однако все они дороги в сравнении с традиционной энергетикой. Водород - дорогое топливо. Поэтому его сегодня практически не используют (именно в качестве топлива).

Структура мирового производства (а) и потребления (б) водорода
Структура мирового производства (а) и потребления (б) водорода
Структура мирового производства (а) и потребления (б) водорода

Основными потребителями водорода являются химическая промышленность и нефтепереработка. Водород является ключевым элементом в производстве минеральных удобрений (получение аммиака).

Более половины потребляемого в мире водорода на сегодняшний день используется в качестве химического сырья. Раскисляющее действие водорода широко применяют в порошковой металлургии, металлообработке, производстве стекла, синтетических рубинов и т.п. Применение водорода в микроэлектронике, главным образом, связано с получением кремния путём восстановления SiCl4. Основным потребителем водорода как топлива является космонавтика. Комбинация «жидкий водород (топливо) — жидкий кислород (окислитель)» обеспечивает выделение максимального количества энергии на единицу веса, что является определяющим критерием для аэрокосмических приложений.

Существуют ли перспективные методы получения водорода, которые будут отличаться дешевизной и качеством? Такие существуют. И не только теоретические, но практические способы.

Например:

плазмохимический способ, который обещает быть в 15 раз дешевле электролизного;

хорошо проработанный способ получения водорода благодаря использованию ядерной энергетики (концепция атомно-водородной энергетики);

получение водорода с помощью альтернативных источников энергии;

усовершенствование методов электролиза воды;

способ использования вещества мантии Земли для получения водорода;

перспективы развития водородной энергетики на основе алюминия и т.д.

О некоторых перспективных способах поговорим в следующей статье.

Часть 3. Водородная энергетика: атомно-водородная технология

================================================================

P. S. Ссылки на источники теперь находятся в группе Вконтакте!

Часть 1. Водородная энергетика: когда наступит будущее?