FUTURYCON
11 850 subscribers

НАСА смоделировало пузырь вокруг Солнечной системы и… его форма оказалась очень необычной

1,6k full reads
2,5k story viewsUnique page visitors
1,6k read the story to the endThat's 64% of the total page views
1 minute — average reading time
Обновленная модель предполагает, что форма образованного Солнцем пузыря гелиосферы (выделена желтым цветом), может иметь форму сдутого круассана, а не форму кометы с длинным хвостом, предложенную другими исследованиями. (Изображение: Opher, et al)
Обновленная модель предполагает, что форма образованного Солнцем пузыря гелиосферы (выделена желтым цветом), может иметь форму сдутого круассана, а не форму кометы с длинным хвостом, предложенную другими исследованиями. (Изображение: Opher, et al)

Ученые разработали новый расчет формы пузыря, окружающего нашу Солнечную систему, используя модель, разработанную на основе данных миссий NASA.

Все планеты нашей Солнечной системы заключены в магнитный пузырь, прорезанный в космосе постоянно истекающим веществом Солнца, солнечным ветром. За пределами этого пузыря находится межзвездная среда - ионизированный газ и магнитное поле, заполняющее пространство между звездными системами в нашей галактике. Один вопрос, на который ученые пытались ответить годами, - это форма этого пузыря, который движется в космосе, когда наше Солнце вращается вокруг центра нашей галактики. Традиционно ученые думали о гелиосфере как о форме кометы с закругленной передней кромкой, называемой носом, и длинным хвостом, тянущимся за ней.

Исследование, опубликованное в журнале Nature Astronomy в марте и представленное на обложке журнала за июль, предлагает альтернативную форму, в которой отсутствует этот длинный хвост: спущенный круассан.

Форму гелиосферы сложно измерить изнутри. Ближайший край гелиосферы находится на расстоянии более десяти миллиардов миль от Земли. Только два космических корабля "Вояджер-1" и "Вояджер-2" непосредственно измерили эту область, оставив нам только две точки наземных данных о форме гелиосферы.

С Земли ученые изучают нашу границу с межзвездным пространством, улавливая и наблюдая частицы, летящие к Земле. Сюда входят заряженные частицы, которые приходят из далеких частей галактики, называемые галактическими космическими лучами, вместе с теми, которые уже были в нашей солнечной системе, движутся к гелиопаузе и отражаются обратно к Земле посредством сложной серии электромагнитных процессов. Их называют энергичными нейтральными атомами, и, поскольку они создаются при взаимодействии с межзвездной средой, они действуют как полезный заместитель для картирования края гелиосферы. Так миссия НАСА Interstellar Boundary Explorer, или IBEX, изучает гелиосферу, используя эти частицы как своего рода радар, отслеживая границу нашей солнечной системы с межзвездным пространством.

Чтобы понять эти сложные данные, ученые используют компьютерные модели, чтобы превратить эти данные в предсказание характеристик гелиосферы. Мерав Офер (Merav Opher), ведущий автор нового исследования, возглавляет научный центр DRIVE в Бостонском университете, финансируемый NASA и NSF, и сосредоточился на этой проблеме.

Эта последняя итерация модели Офера использует данные планетарных научных миссий NASA, чтобы охарактеризовать поведение материала в космосе, который заполняет пузырь гелиосферы, и получить новый взгляд на его границы. В миссии НАСА «Кассини» был установлен инструмент, предназначенный для изучения частиц, захваченных магнитным полем Сатурна, а также наблюдений за частицами, отскакивающими обратно во внутреннюю часть Солнечной системы. Эти измерения аналогичны измерениям IBEX, но дают четкое представление о границах гелиосферы.

Кроме того, миссия NASA New Horizons обеспечила измерения улавливаемых ионов, частиц, которые ионизируются в космосе, улавливаются и движутся вместе с солнечным ветром. Из-за того, что они происходят от частиц солнечного ветра, исходящих от Солнца, улавливаемые ионы намного горячее, чем другие частицы солнечного ветра, и именно от этого факта зависит работа Офера.

«Есть две жидкости, смешанные вместе. У вас есть один очень холодный компонент и гораздо более горячий компонент - улавливающие ионы », - сказал Офер, являющийся также профессором астрономии в Бостонском университете. «Если у вас есть холодная и горячая жидкости, и вы поместите их в космос, они не будут смешиваться - они будут развиваться в основном отдельно. Мы разделили эти две составляющие солнечного ветра и смоделировали полученную трехмерную форму гелиосферы».

Рассмотрение компонентов солнечного ветра по отдельности в сочетании с более ранней работой Офера с использованием солнечного магнитного поля в качестве доминирующей силы в формировании гелиосферы привело к получению сдутой формы круассана с двумя струями, изгибающимися от центральной выпуклой части гелиосферы и, в частности, с отсутствием длинный хвост предсказан многими учеными.

«Поскольку поглощающие ионы доминируют в термодинамике, всегда преобладают сферические формы. Но из-за того, что [здесь] они очень быстро покидают систему после окончательной встряски, вся гелиосфера сдувается », - рассказал Офер.