Квантовая запутанность и ее новые формы

Квантовый мир атомов и частиц причудлив и удивителен. На квантовом уровне частицы могут проникать через непроницаемые барьеры и быть в двух местах одновременно. И это отнюдь не математические причуды, а реальные эффекты, которые можно наблюдать в лаборатории снова и снова. Но на этом удивительные свойства частиц в квантовом мире не заканчиваются. Одной из характерных особенностей квантовой механики является "квантовая запутанность".

Запутанные частицы остаются загадочным образом связанными на любом расстоянии. И вот три независимых европейских группы ученых смогли запутать не просто два отдельных атома, а целые облака, состоящие из большого количества частиц. И самое интересное, что они нашли способ задействовать технологический потенциал своего открытия.

Когда частицы запутываются, они обмениваются свойствами, которые делают их зависимыми друг от друга. И неважно как далеко друг от друга они находятся. Эйнштейн назвал запутанность «жутким действием на расстоянии», поскольку изменение одной частицы в запутанной паре мгновенно воздействует на ее пару — независимо от того, насколько она далека.

Возможные применения

Ученые предполагают, что разработанные методы можно расширить так, что каждый атом в облаке будет использоваться независимо. И если это удастся сделать, для квантовых вычислений это будет просто сказочно. В цифровых вычислениях информация обрабатывается в форме нулей и единиц, или битах. В квантовых же им на замену приходят кубиты. Текущий рекорд количества работающих кубитов в виде запутанных ионов (заряженных атомов) всего несколько десятков, поэтому тысячи кубитов, которые одновременно работают в облаке, будут представлять серьезное достижение.

Другая область, которая получит выгоду от этого прорыва, — метрология, наука сверхточных измерений. Когда между двумя частицами или системами образуется запутанность, измерения, сделанные на одной половине, раскрывают информацию о другой. Это позволяет измерять параметры с большей чувствительностью, чем было бы возможно в противном случае. Запутанность, используемая таким образом, сможет повысить точность атомных часов и систему глобального позиционирования (GPS), либо помочь в производстве более чувствительных детекторов для МРТ-машин, например.

Понимание и использование квантовых эффектов, таких как запутанность, позволят создавать новые технологии, возможности которых будут превосходить наши современные. Поэтому так много внимания уделяется исследованиям в области квантовых технологий и поэтому так важны любые прорывы в этой области.

P.S. Подписывайтесь на мой канал в Telegram, если вам понравилась эта статья.