Числа, которые изменили мир. Мнимая единица

Ранее мы с вами разобрали пару крайне важных, в нашем мире, чисел: число Эйлера и число ПИ. Сегодня мы с вами узнаем еще об одном интересном и важном числе.

Мнимая единица, по сути, его нельзя назвать числом в привычном нам понимании. Это число не вещественное, а комплексное. Давайте пойдем по порядку.

Сперва история

Первые заметки о нем были обнаружены в записях Джероламо Кардано - итальянский математик живший в 16 веке. Он ввел его, когда решал кубические уравнения. Позже, когда ученые обнаружили эти записи, они начали производить с ним различные действия.

Основной вклад в развитие этой теории вложил ранее знакомый нам Леонард Эйлер. Тогда родился комплексный анализ, а позже и теория функций комплексного переменного (ТФКП). Леонард распространил основные функции в комплексную плоскость. Было сформулировано множество принципов, алгебраические действия не отличались от привычного вещественного анализа, но было сделано одно существенное допущение: в этой теории есть число, квадрат которого равен отрицательному числу. И это мнимая единица. Обозначается она как i, и такое название она получила благодаря все тому же Эйлеру (в некоторых других науках, таких как электротехника, встречается обозначение j, так как буква i занята для обозначения тока).

По определению мнимая единица - это число, квадрат которого равен -1 (i^2 = -1). Давайте попробуем поразмыслить, что это значит.

Для нахождения площади квадрата, мы возводим длину стороны этого квадрата в квадрат. То есть, мнимая единица - это сторона квадрата, у которого отрицательная площадь. Да, на реальности мы такого не встретим, именно по этому она называется мнимой. Но какой от нее тогда толк? Об этом немного позже.

Немного введу в курс дела

В комплексном анализе числовая прямая расширяется до комплексной плоскости, где осью абсцисс представлена вещественная прямая, а осью ординат - мнимая. Существует несколько способов записи комплексного числа: в виде пары чисел, в алгебраической форме, тригонометрической и вытекающей отсюда показательной.

Все формы представления в порядке, написанном выше
Все формы представления в порядке, написанном выше

Самая красивая формула математики

Я хочу показать вам одну красивую формулу в математике, а для этого необходимо немного разобраться в комплексном анализе.

Давайте взглянем на комплексную плоскость поподробнее. На ней числа отмечаются точками, и каждой соответствует своя координата.

Но так же возможно векторное представление, где начало вектора лежит в начале координат, а конец на точке.

Благодаря этому возможно ввести показательное представление. Где число перед экспонентой показывает длину вектора, а угол в показателе равен углу между вещественной осью и этим вектором.

А теперь давайте рассмотрим следующий случай: пусть длина вектора равняется 1, а угол будет равен пи, то есть, пол оборота. Так мы попадем в точку -1 на вещественной оси.

То есть e^(i*pi) = -1. Переписав ее в несколько другом виде можно получить следующее выражение:

Это так называемая формула Эйлера (на самом деле это лишь частный случай этой формулы). И вся ее красота состоит в том, что она содержит в себе все знаменитые константы и числа.

Важность этого числа

Комплексный анализ очень важен для нашей жизни. В физике с его помощью описывают все волновые процессы. Вообще, говорят, что все волны и поля существуют в комплексном пространстве, а то, что мы видим, только тень «истинных» процессов. Квантовая механика, где и атом и другие материальные объекты — волны, делает такую трактовку более убедительной.

Так же, современная аэродинамика не обходится без ТФКП, где функции Жуковского могут давать необходимые профили крыла.

И это еще не все. Во многих отраслях так или иначе могут присутствовать элементы этой теории, поэтому ее важность нельзя отрицать.

Если данная статья была вам интересна, то не забывайте ставить пальцы вверх, я постарался написать для вас наиболее понятно. Так же подписывайтесь на канал, если еще не сделали этого! До скорых встреч и всего доброго! :)