Современные задачи, возникающие при проектировании, строительстве, эксплуатации зданий и сооружений требуют представления данных в трёхмерном пространстве, с высокой точностью и полнотой описывающих взаимное расположение частей зданий, сооружений, ситуацию и рельеф. Использование традиционных методов и инструментов (тахеометров, ГНСС-систем) позволяет решать рядовые задачи. Однако всё чаще возникают запросы, требующие полноценного 3х мерного моделирования. К таким сферам относится сопровождение информационного моделирования зданий и сооружений - BIM, фасадные съёмки, цифровые чертежи цехов, заводов. С появлением и развитием технологии лазерного сканирования задача построения 3D цифровых моделей значительно упростилась.
Наземное лазерное сканирование
Лазерное сканирование на сегодняшний момент делится на наземное (НЛС), мобильное (МЛС или мобильное картографирование) и воздушное (ВЛС). Предметом настоящей статьи является наземное лазерное сканирование, которое считается самым быстрым и высокопроизводительным средством получения точной и наиболее полной информации о пространственном объекте сложной формы: зданиях, промышленных сооружениях и площадках, памятниках архитектуры, смонтированном технологическом оборудовании. Суть технологии сканирования заключается в определении пространственных координат объекта при помощи лазерного сканера. Процесс реализуется посредством измерения углов и расстояний до всех определяемых точек с помощью измерений лазерным лучом до отражающих поверхностей с нескольких точек сканирования с перестановкой прибора. Измерения производятся с очень высокой скоростью – наиболее современные приборы производят измерения со скоростью от одного миллиона точек в секунду.
Управление работой лазерного сканера осуществляется с помощью ноутбука или планшета с набором программ, или с помощью сенсорной панели управления, встроенной в сканер. Полученные координаты точек из сканера создают так называемое облако точек.
Сканер имеет определенную область обзора. Чаще всего они имеют встроенную цифровую фото-видеокамеру. С помощью камеры можно выделять необходимую область сканирования, либо проводить визуальный контроль качества и полноты собранных данных. Также фотокамера используется для раскрашивания облака точек в естественные цвета.
Работа по сканированию происходит с нескольких точек стояния (так называемых станций сканирования) для получения полной информации о форме объектов, потому что сложный объект зачастую не виден с одной точки наблюдения. На стадии полевых работ необходимо предусмотреть зоны взаимного перекрытия сканов. При этом перед началом сканирования в этих зонах часто размещают специальные мишени - цели. Для объединения сканов, выполненных с различных точек, используют процесс сшивки, который может происходить с использованием координат этих мишеней, либо с использованием машинного зрения непосредственно по облакам точек. Лазерное сканирование предоставляет возможность получить максимум информации о геометрической структуре объекта. Его результатом являются сшитые облака точек и 3D модели с высокой степенью детализации (пространственное разрешение – до нескольких миллиметров).
Наземное лазерное сканирование значительно отличается от других методов сбора пространственной информации. Среди отличий выделим несколько основных:
- полная реализация принципа дистанционного зондирования, позволяющего собирать информацию об исследуемом объекте, находясь на расстоянии от него;
- максимальная полнота и подробность получаемой информации;
- высокая скорость получения информации – съёмка на одной точке занимает от 2х до 10 минут (в зависимости от плотности), совокупная скорость полевых и офисных работ в несколько раз выше обычной;
- стоимость съёмки объектов ниже, чем при использовании классических технологий примерно в 3 раза;
- трёхмерная визуализация результатов измерений;
- достоверность результатов - облако точек невозможно изменить, оно является реальной копией объекта.
Благодаря своей универсальности и высокой степени автоматизации процессов измерений лазерный сканер является инструментом оперативного решения самого широкого круга прикладных инженерных задач.
BIM – информационное моделирование зданий
Наиболее актуальной технологией, в которой применяется лазерное сканирование, является BIM – информационное моделирование зданий.
Технология информационного моделирования является самым передовым решением в строительной отрасли при возведении, эксплуатации и реконструкции зданий и сооружений, предполагающий комплексную обработку в трёхмерном представлении всей архитектурно-проектной, конструкторской, технологической, экономической и иной информации о здании, когда здание и все, что имеет к нему отношение, рассматривается как единый объект. Внедрение данной технологии значительно повышает качество проектирования и упрощает работу на всех этапах жизненного цикла объекта.
Лазерное сканирование применяется в BIM при изысканиях на первых этапах проекта, контроле процесса строительства, оценке результата строительства и актуализации BIM модели по фактическим данным.
Рассмотрим подробнее этапы проверки и актуализации BIM-модели по данным наземного лазерного сканирования.
Первым этапом является непосредственно лазерное сканирование. При этом сканирование может выполняться с требуемой плотностью и уровнем детализации (в зависимости от задач и LOD). После завершения сканирования данные необходимо передать в программу обработки данных лазерного сканирования, например, Trimble RealWorks, и выполнить сшивку отдельных сканов в единое облако точек. При правильной организации процесса сканирование сшивка данных выполняется в полностью автоматическом режиме. А, например, лазерный сканер Trimble X7 выполняет автоматическую сшивку данных непосредственно в поле. При необходимости выполняется привязка сшитого облака точек к системе координат объекта. Программное обеспечение Trimble Real Works позволяет отображать данные лазерного сканирования в трехмерном виде в различных заливках (белый цвет, градации серого, реальный цвет, окрас по интенсивности отраженного сигнала, заливка по высоте, заливка по цветовой классификации и т.д.) и при необходимости перемещаться по нему, выполняя измерения.
Вторым этапом является наложение полученного облака точек на цифровую модель здания для последующего визуального анализа и инспектирования отклонений данных съемки от проекта. Наложение, визуальный анализ и инспектирование можно выполнить в программе Trimble RealWorks
Оценку облака можно выполнить и в стороннем программном обеспечении, например Autodesk Navisworks. Для этого необходимо выполнить экспорт облака точек в одном из стандартных форматов, например, формат Autodesk Recap Pro - rcp.
Третьим этапом является оценка отклонений, отображение отклонений на различных сечениях, подготовка отчетов.
На окончательном этапе в используемой программе для BIM-проектирования при необходимости можно выполнить актуализацию исходной BIM-модели по фактическим данным.
Как и любая иная технология, лазерное сканирование является отличным решением, ровно настолько, насколько хорошо не только применяемое оборудование и программное обеспечение, но, что важнее, мастерство специалистов, использующих его. Поэтому при выборе решений обращайте внимание не только на технические характеристики оборудование, но и на опыт компании, которая его поставляет и будет в дальнейшем помогать вам на этапе внедрения технологии лазерного сканирования в практику производства.
Компания ПРИН ведет свою историю с 1990 года и предлагает лазерные сканеры различного назначения – НЛС, МЛС, программные продукты для обработки данных лазерного сканирования, а также проводит обучение по работе с приобретаемым оборудованием и пуско-наладку поставляемого оборудования на вашем объекте