4188 subscribers

Абсурдный взгляд гениального Фейнмана - «суммирование по путям», нет никакой волновой функции Шредингера

11k full reads

Согласно формулировке квантовой механики, предложенной Фейнманом, частица, перемещающаяся из одной точки в другую, движется одновременно по всем возможным путям

«Квантовая механика дает совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть — абсурдной» Ричард Фейнман

Согласно квантовой механике Вселенная развивается в соответствии со строгими и точными математическими законами, но эти законы определяют только вероятность того, что может наступить то или иное конкретное будущее, и ничего не говорят о том, какое будущее наступит в действительности.

Многие сочли этот вывод совершенно неприемлемым. Одним из таких людей был Эйнштейн. В одном из наиболее известных в истории физики высказываний он предостерегал сторонников квантовой механики:

«Бог не играет в кости со Вселенной» Эйнштейн

Он считал, что вероятность появляется в фундаментальной физике по той же причине, по которой она появляется в игре в рулетку: вследствие существенной неполноты нашего знания. С точки зрения Эйнштейна, во Вселенной нет места для будущего, точное содержание которого включает элементы вероятности. Физики должны предсказывать, как будет развиваться Вселенная, а не определять вероятность того, что события могут пойти каким-то путем. Но эксперимент за экспериментом (некоторые из наиболее впечатляющих были выполнены уже после его смерти) убедительно подтверждали, что Эйнштейн был не прав. Как заметил однажды по этому поводу британский физик-теоретик Стивен Хокинг:

«Заблуждался Эйнштейн, а не квантовая теория» Стивен Хокинг

Тем не менее, споры о том, что же в действительности представляет собой квантовая механика, не утихают. Все согласны в том, как использовать уравнения квантовой механики для получения точных предсказаний. Нет согласия в вопросах о том, что в действительности представляют собой волновые функции, каким образом частица «выбирает», какому из многих вариантов будущего ей следовать. Нет согласия даже в вопросе о том, действительно ли она выбирает или вместо этого разделяется, подобно разветвляющемуся руслу реки, и живет во всех возможных будущих, в вечно расширяющемся мире параллельных вселенных.

Общий урок, который дают теория относительности и квантовая механика, состоит в том, что в ходе глубоких исследований основ мироздания можно столкнуться с фактами, которые очень сильно отличаются от наших ожиданий. Отвага при постановке новых вопросов может потребовать непредвиденной гибкости, когда нам придется принимать неожиданные точки зрения.

Взгляд Ричарда Фейнмана на природу результата в эксперименте с двумя щелями

Ричард Фейнман был одним из величайших физиков-теоретиков со времен Эйнштейна. Он полностью принял вероятностную интерпретацию квантовой механики, но после Второй мировой войны предложил новый взгляд на эту теорию.

Ричард Фейнман (1918–1988)- выдающийся американский  физик-теоретик. Лауреат Нобелевской премии по физике. Один из создателей квантовой электродинамики. В 1943-1945 годах входил в число разработчиков атомной бомбы в Лос-Аламосе. Разработал метод интегрирования по траекториям в квантовой механике, а также так называемый метод диаграмм Фейнмана в квантовой теории поля, с помощью которых можно объяснять превращения элементарных частиц. Предложил партонную модель нуклона, теорию квантованных вихрей.
Ричард Фейнман (1918–1988)- выдающийся американский физик-теоретик. Лауреат Нобелевской премии по физике. Один из создателей квантовой электродинамики. В 1943-1945 годах входил в число разработчиков атомной бомбы в Лос-Аламосе. Разработал метод интегрирования по траекториям в квантовой механике, а также так называемый метод диаграмм Фейнмана в квантовой теории поля, с помощью которых можно объяснять превращения элементарных частиц. Предложил партонную модель нуклона, теорию квантованных вихрей.

формулировка существенно отличается от общепринятой. Рассмотрим ее в контексте экспериментов с электронами и двумя щелями.

Абсурдный взгляд гениального Фейнмана - «суммирование по путям», нет никакой волновой функции Шредингера

Проблема с интерпретацией возникает потому, что в нашем представлении электрон проходит либо через левую щель, либо через правую, и поэтому мы рассчитываем увидеть картину показанную на рис.:

Абсурдный взгляд гениального Фейнмана - «суммирование по путям», нет никакой волновой функции Шредингера

Электрону, проходящему через правую щель, должно быть все равно, существует ли левая щель, и наоборот. Но каким-то образом он ее чувствует. Получаемая интерференционная картина требует взаимодействия и сообщения между чем-то, чувствительным к обеим щелям, даже если электроны выстреливаются поодиночке.

Шредингер, де Бройль и Борн объясняли этот феномен, приписывая каждому электрону волновую функцию. Подобно волнам на поверхности воды, волны функции плотности вероятности электрона «видят» обе щели и испытывают своего рода интерференцию при наложении. На тех участках, где вероятностная волна усиливается при наложении, подобно участкам значительного усиления колебаний , обнаружение электрона вероятно, а там, где вероятностная волна ослабляется при наложении, подобно местам с минимальной амплитудой или отсутствием колебаний, обнаружение электрона маловероятно или невероятно. Электроны сталкиваются с фосфоресцирующим экраном один за другим, распределенные в соответствии с функцией плотности вероятности и, в конечном итоге, образуют интерференционную картину.

Сумасшедшая интерпретация эксперимента с двумя щелями Фейнмана

Фейнман выбрал другой подход. Он усомнился в основном классическом предположении, согласно которому каждый электрон проходит либо через левую щель, либо через правую. На первый взгляд это предположение настолько фундаментально, что сомневаться в нем нелепо. В конце концов, разве вы не можете заглянуть в область, расположенную между щелями и фосфоресцирующим экраном, и посмотреть, сквозь какую щель проходит каждый электрон? Да, вы можете. Но тем самым вы измените эксперимент. Чтобы увидеть электрон, вы должны сделать с ним что-нибудь — например, осветить его, т. е. столкнуть с ним фотон. В повседневных масштабах фотон действует как исчезающе малый зонд, который отскакивает от деревьев, картин и людей, не оказывая практически никакого влияния на движение этих сравнительно больших материальных тел. Но электрон — это ничтожно малая частица материи. Независимо от того, насколько осторожно вы будете определять щель, через которую он прошел, отражающиеся от электрона фотоны неизбежно повлияют на его последующее движение. А это изменение движения изменит результат нашего эксперимента. Если ваше вмешательство будет достаточно сильным для того, чтобы вы смогли определить щель, через которую прошел электрон, результат эксперимента изменится. Квантовый мир гарантирует, что как только вы установили, через какую щель, правую или левую, прошел каждый электрон, интерференция между этими двумя щелями исчезнет.

Фейнман провозгласил, что каждый электрон, который проходит через преграду и попадает на фосфоресцирующий экран, проходит через обе щели. Это звучит дико, но не торопитесь возмущаться, вас ждут еще более сумасшедшие заявления. Фейнман высказал утверждение, что на отрезке от источника до некоторой точки на фосфоресцирующем экране каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно.

Электрон вполне упорядоченным образом проходит через левую щель. Одновременно он столь же упорядоченно проходит через правую щель. Он направляется к левой щели, но вдруг меняет направление и устремляется к правой. Он петляет вперед и назад и, наконец, проходит через левую щель. Он отправляется в долгое путешествие к туманности Андромеды, там он разворачивается, возвращается назад и проходит через левую щель на пути к экрану. Он движется и так и этак — согласно Фейнману, электрон одновременно «рыщет» по всем возможным путям, соединяющим пункт отправления и пункт назначения.

Фейнман показал, что каждому из этих путей можно поставить в соответствие некоторое число, и общее среднее этих чисел даст ту же вероятность, что и расчет с использованием волновой функции.

Итак, с точки зрения Фейнмана, с электроном не нужно связывать никакой вероятностной волны. Вместо этого мы должны представить себе нечто столь же, если не более, странное. Вероятность того, что электрон, — который во всех отношениях проявляет себя частицей, — появится в некоторой заданной точке экрана, определяется суммарным эффектом от всех возможных путей, ведущих в эту точку. Этот подход к квантовой механике известен как фейнмановское «суммирование по путям».

Здесь начинает протестовать наше классическое образование: как может один электрон одновременно перемещаться по различным путям, да еще и по бесконечному числу путей? Это возражение кажется неоспоримым, но квантовая механика — реальная физика нашего мира — требует, чтобы вы держали столь тривиальные возражения при себе. Результаты расчетов с использованием фейнмановского подхода согласуются с результатами, полученными с применением метода волновых функций, которые, в свою очередь, согласуются с экспериментальными данными. Вы должны позволить природе самой определять, что является разумным, а что — неразумным.

Спасибо за внимание!