Черная дыра галактики M87: новые штрихи к портрету

22 July

В апреле 2019 года коллаборация Телескопа горизонта событий (Event Horizon Telescope, EHT) опубликовала первое «фото» ближайших окрестностей сверхмассивной черной дыры, находящейся в центре гигантской эллиптической галактики M87. Галактика удалена от нас примерно на 53 млн световых лет, а размер запечатленной области составляет несколько световых дней. Такой феноменальной разрешающей способности удалось добиться благодаря тому, что EHT — это не один телескоп, а система из нескольких крупных радиотелескопов, расположенных на разных континентах, но работающих как единое целое. Коллаборация продолжала работать, и сейчас, спустя два года ученые представили новую порцию данных. Им удалось запечатлеть поляризованное излучение от аккреционного диска вокруг этой черной дыры, тщательный анализ которого позволил многое понять про структуру магнитного поля в ее окрестностях. В некотором смысле этот результат даже важнее, чем «портрет» черной дыры, полученный два года назад, так как он позволил достаточно надежно определить режим, в котором аккрецирует эта дыра. По удачному совпадению недавно же была опубликована и статья нескольких научных групп, работающих на самых разных телескопах (как наземных, так и космических), которые провели наблюдения бьющего из этой черной дыры джета в широкой области электромагнитного диапазона. Из нее следует, что до полного понимания всех процессов, которые порождают джеты и и происходят внутри них, довольно далеко, но зато сейчас теоретики получили новые ограничения на параметры своих теорий.

Черные дыры — объекты с самой высокой плотностью энергии в нашей Вселенной: в достаточно малом по астрофизическим меркам объеме сконцентрирована гравитационная и вращательная энергия огромного количества вещества, которое когда-то сформировало эту дыру. Сейчас известно, что существуют черные дыры как минимум двух классов: дыры звездных масс (их массы обычно обычно попадают в промежуток от нескольких до нескольких десятков масс Солнца) и сверх массивные черные дыры (СМЧД), обитающие в центрах галактик (их массы измеряются миллионами или даже миллиардами масс Солнца). Вопрос о существовании черных дыр промежуточной массы (порядка 104–105 масс Солнца) пока открыт.

Радиус горизонта событий черной дыры пропорционален ее массе (rg=2GM/c2rg=2GM/c2, подробнее об этом см., например, в задаче Испарение черных дыр). Размер «звездных» черных дыр лежит в диапазоне от нескольких до пары десятков километров. А вот радиус горизонта СМЧД — это уже поистине астрономическая величина: от нескольких радиусов Юпитера (сотни тысяч км, это порядка одной световой секунды) до нескольких десятков астрономических единиц (1 а. е. ≈ 1,5·1011 м, то есть речь идет о миллиардах километров — или световых часах).

Распространено представление о черных дырах как о чрезвычайно «прожорливых» объектах, которые поглощают оказавшееся поблизости вещество и благодаря этому только увеличивают свою массу. Если не вдаваться в детали, то дело примерно так и обстоит. Тем удивительнее, что природа умеет «извлекать» энергию из этих объектов в процессе аккреция. Вокруг СМЧД в центрах галактик вещество из межзвездного пространства постепенно теряет момент импульса и формирует аккреционный поток, который медленно, но верно падает на черную дыру.

По мере приближения к горизонту событий вещество теряет гравитационную энергию и из-за этого нагревается. Изначально холодный неионизированный газ нагревается до миллиардов кельвинов. При этом средняя энергия электронов и протонов становится во много раз больше энергии связи в атомах — вещество полностью ионизируется. В результате медленное и размеренное течение межзвездного водорода в нескольких световых годах от горизонта событий на расстоянии нескольких световых дней от него становится очень горячим электрон-протонным супом, движущимся со скоростью, близкой к скорости света. Что важно, нагретая плазма имеет свойство излучать, и это излучение можно попытаться увидеть! А что еще важнее, если в аккреционном диске присутствуют магнитные поля, то это излучение еще и поляризовано и, измерив поляризацию, можно узнать структуру магнитного поля. Но об этом ниже.