Нейтрино - осколки Большого взрыва

Когда-то давно Вселенная была маленькой и очень непрозрачной. Будущее вещество в ней было размещено настолько плотно, что пролететь сквозь него не могли даже нейтрино. Эта эпоха продолжалась, по стандартным представлениям, очень недолго: около 1–3 секунд. Затем пространство стало достаточно обширным, его содержимое разместилось посвободнее, и с тех пор до наших дней Вселенная практически прозрачна для нейтрино.

В ходе Большого взрыва и последовавших за ним событий наших частиц образовалось очень много, вероятнее всего, примерно столько же, сколько и фотонов. Последние, ныне составляющие реликтовое излучение, вокруг нас в изобилии. Если считать в штуках, то их примерно в миллиард раз больше, чем протонов с нейтронами.

Как и фотоны, нейтрино по мере расширения Вселенной постепенно остывали, и теперь их температура составляет примерно 3–4 К. Точнее, она должна быть такой, но проверить это пока не удалось.

Принципиальное отличие реликтовых фотонов от реликтовых нейтрино в том, что первые без особых проблем распознаются современной техникой, а вторые – нет. Речь идет о нейтрино, имеющих сверхнизкую энергию, и каким детектором можно их «поймать» –

большой вопрос. Современная техника на такое достижение не способна, а среди профессионалов распространено мнение, что ее не будет как минимум до конца этого века.

В 2010 году сообщили о команде ученых из Массачусетского технологического института, которая пыталась засечь реликтовые нейтрино, наблюдая за распадом ядер трития. Этот изотоп водорода очень нестабилен, и чтобы «подтолкнуть» его ядро к распаду, достаточно воздействия любой частицы с ненулевой энергией. Не говоря уже о том, что оно может распасться и само, без всяких внешних воздействий (период полураспада – 12 лет).

Отслеживая энергию получившихся осколков и помня о законе сохранения энергии, можно выделить среди них те, которые получились из самопроизвольно распавшихся ядер, и те, на которые подействовали какие-то внешние силы. В случае хорошо экранированного детектора это в большинстве случаев будут нейтрино. Последние можно поделить на нейтрино больших энергий, о которых мы и так много чего знаем, и нейтрино малых энергий – искомые реликты.

Все бы хорошо, но для реализации этого замысла нужна сверхчувствительная по нынешним временам техника. Наверное, именно по этой причине новостей о распадающемся тритии за последующие годы так и не поступило. Это достойно сожаления – обнаружение реликтовых нейтрино и возможность их хотя бы приблизительного подсчета очень помогли бы космологам в понимании того, как сформировалась Вселенная.